Development of SARS-CoV-2 Inhibitors Using Molecular Docking Study with Different Coronavirus Spike Protein and ACE2

Author:

Shamkh Israa Mohamed1ORCID,Pratiwi Dina2ORCID

Affiliation:

1. Bio Search Research Institution

2. Sekolah Tinggi Farmasi Muhammadiyah Tangerang

Abstract

The novel coronavirus SARS-CoV-2 is an acute respiratory tract infection that emerged in Wuhan city, China. The spike protein of coronaviruses is the main driving force for host cell recognition and is responsible for binding to the ACE2 receptor on the host cell and mediates the fusion of host and viral membranes. Recognizing compounds that could form a complex with the spike protein (S-protein) potently could inhibit SARS-CoV-2 infections. The software was used to survey 300 plant natural compounds or derivatives for their binding ability with the SARS-CoV-2 S-protein. The docking score for ligands towards each protein was calculated to estimate the binding free energy. Four compounds showed a strong ability to bind with the S-protein (neohesperidin, quercetin 3-O-rutinoside-7-O-glucoside, 14-ketostypodiol diacetate, and hydroxypropyl methylcellulose) and used to predict its docking model and binding regions. The highest predicted ligand/protein affinity was with quercetin 3-O-rutinoside-7-O-glucoside followed by neohesperidin. The four compounds were also tested against other related coronavirus and showed their binding ability to S-protein of the bat, SARS, and MERS coronavirus strains, indicating that they could bind and block the spike activities and subsequently prevent them infection of different coronaviruses. Molecular docking also showed the probability of the four ligands binding to the host cell receptor ACE2. The interaction residues and the binding energy for the complexes were identified. The strong binding ability of the four compounds to the S-protein and the ACE2 protein indicates that they might be used to develop therapeutics specific against SARS-CoV-2 and close related human coronaviruses.

Publisher

Universitas Muhammadiyah Palangkaraya

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3