Microwave Heating of Cordierite Ceramic Substrate for After Treatment Systems

Author:

Marin R. C.1,Savu S. V.2ORCID

Affiliation:

1. University of Craiova, Doctoral School Acad. Radu Voinea, Romania

2. University of Craiova, Faculty of Mechanics

Abstract

Selective catalyst reduction is one of the most affordable and successful technologies aimed at reducing NOx emissions from diesel engines. However, the reduction process can be achieved if a certain temperature is reached for the ceramic substrate of the catalytic core. The required temperatures for catalytic reaction vary from 2500 C to 4500 C depending on the technology applied in the catalytic processes. This paper aims at presenting preliminary research in microwave cordierite heating, which is a type of magnesium aluminium silicate used as ceramic honeycomb substrate (catalyst monolith) in the after treatment system in the automotive industry. The research focused on testing the Mg2Al4Si5O18 composite material (cordierite) for different microwave heating regimes in order to establish the level of microwave power required for fast heating. This application will be subject for the further development of new MW-SCR after treatment systems in order to reduce the NOx emissions at cold start engine or low operating regimes of non-road mobile machinery engines. The ceramic composite material was heated for 5 levels of microwave power, from 600 W to 1400 W, using a 6 kW microwave generator coupled with a matching load impedance tuner, and the temperatures were recorded using an IR pyrometer.

Publisher

Universitatea Dunarea de Jos din Galati

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3