Affiliation:
1. EUROPEAN UNIVERSITY OF LEFKE
2. Bahçeşehir Cyprus University
Abstract
Sustainable development of the construction industry should use recycled materials to the great- est extent to reduce natural hazards due to the increased accumulation of waste and the deple- tion of natural resources. However, engineering applications using waste materials are always expected to perform satisfactorily. In this aspect, detailed and systematically carried out experi- mental studies are critical in selecting the type and the quantities of waste materials that will be recycled through their use within engineering applications. This study provides systematically produced experimental data on compressive and flexural strength performance to quantitatively compare the effects of using different percentages of waste glass and brick aggregates in cement mortars with a specified workability characteristic. Results show that mortar samples with waste glass aggregates perform better under compressive loading since only around 14% strength de- crease compared to the control mix was yielded with the inclusion of waste glass. In contrast, in both cases, a 30% strength decrease was recorded with the inclusion of waste bricks for 100% replacement of natural sand in the mortars. In the case of flexural strength performance, 50% replacements of natural aggregates with waste bricks and glass yielded around 27% and 38% strength decrease, indicating that using waste brick in cement mortars could result in a better flexural strength performance in comparison, provided that its content is controlled. Replace- ment of natural sand in cement mortars with waste brick and glass yielded less significant flex- ural strength, decreasing the difference between the two types of wastes when the replacement ratio was as high as 100%. Hence, based on the presented experimental evidence, it is concluded that the decision on the type and the quantity of the waste materials to be used should be made considering the area of the use of the mortar and its expected service type.
Publisher
Yildiz Technical University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Mechanical and Microstructural Properties of Mortars: Obsidian Powder Effect;Journal of Sustainable Construction Materials and Technologies;2024-06-24