Sustainability beyond the surface: Evaluating the long-term environmental and energy performance of selected cladding materials for housing retrofits

Author:

Alegbe Mark1ORCID,Hammed Nasuri2ORCID

Affiliation:

1. Department of Architectural Technology, Auchi Polytechnic

2. Department of Architecture, Bells University of Technology

Abstract

External walls, constituting the largest exposed surface area of the building envelope, face heightened susceptibility to environmental influences. In this study location, aesthetic con- siderations often overshadow environmental impact and comfort requirements in selecting exterior cladding materials. This paper investigates the energy performance, global warming potential, and thermal comfort aspects of carefully selected cladding materials, informed by an exhaustive literature review, for application in retrofit projects in Abuja, Nigeria. Energy con- sumption, carbon emissions, and temperature distributions were simulated using materials in a hypothetical single-floor residential building finished with cement-sand plaster. The findings show that gravel stone exhibits the most negligible environmental impact. In contrast, alumi- num and lightweight metal cladding panels contribute significantly to the embodied carbon of the building despite ranking as the most expensive materials. Insulating the test building with polyurethane boards yields substantial energy savings of up to 9% in cooling electricity, averting the need for added cladding. This study emphasizes the significance of adopting a multi-criterion approach in selecting façade cladding materials, prioritizing environmental and thermal considerations over aesthetic and cost benefits. The implications extend beyond mere emissions reduction, shedding light on the vital interplay between material choices on comfort and energy efficiency in building design.

Publisher

Yildiz Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3