Use of SCM in Manufacturing the Compressed Brick Optimizing Embodied Energy and Carbon Emission

Author:

JOSHI Tejas1ORCID,RANGWALA Hasan1ORCID,PRAJAPATI Apurav1ORCID

Affiliation:

1. Nirma

Abstract

Brick is one of the most used building materials in masonry construction. Conventionally burnt clay bricks are used. These bricks are manufactured from clay and burnt in a kiln at a higher temperature. This results in a very high amount of CO2 emission and has high embodied energy, which highly affects the environment. Compressed bricks are one of the sustainable solutions to overcome these issues of high CO2 emission and embodied energy. Adopting sustainable alter- natives, such as compressed bricks incorporating supplementary cementitious materials or envi- ronmentally friendly brick manufacturing processes, can help mitigate these issues and promote more sustainable construction practices. In this study, attempts have been made to manufacture and test the bricks with different proportions of the soil, i.e., the mix of locally available soil with sand, cement as the cementitious materials, and SCMs like fly ash & GGBS. The research methodology involves the formulation of different mixtures with varying proportions of SCMs. The specimens were then prepared using a compression molding technique and cured under controlled conditions. This research paper aims to investigate the effects of incorporating sup- plementary cementitious materials (SCMs) on the properties of compressed bricks. The study focuses on evaluating the density, compressive strength, water absorption, and efflorescence, as well as calculating the embodied energy and carbon dioxide emissions associated with the pro- duction of these bricks. Furthermore, the paper comprehensively analyzes the embodied energy and CO2 emissions associated with producing compressed bricks. These calculations consider the energy consumed and CO2 emitted in manufacturing, including raw material extraction, transportation, and brick fabrication. The study's results demonstrate the influence of SCMs on the properties of the compressed bricks. The analysis of embodied energy and CO2 emissions provided valuable insights into the environmental sustainability of the brick production process.

Publisher

Yildiz Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3