Population-level surveillance of antibiotic resistance in Escherichia coli through sewage analysis

Author:

Hutinel Marion12,Huijbers Patricia Maria Catharina12,Fick Jerker3,Åhrén Christina412,Larsson Dan Göran Joakim12,Flach Carl-Fredrik12

Affiliation:

1. Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

2. Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden

3. Department of Chemistry, Umeå University, Umeå, Sweden

4. Swedish Strategic Program against Antimicrobial Resistance (Strama), Region Västra Götaland, Gothenburg, Sweden

Abstract

Introduction The occurrence of antibiotic resistance in faecal bacteria in sewage is likely to reflect the current local clinical resistance situation. Aim This observational study investigated the relationship between Escherichia coli resistance rates in sewage and clinical samples representing the same human populations. Methods E. coli were isolated from eight hospital (n = 721 isolates) and six municipal (n = 531 isolates) sewage samples, over 1 year in Gothenburg, Sweden. An inexpensive broth screening method was validated against disk diffusion and applied to determine resistance against 11 antibiotics in sewage isolates. Resistance data on E. coli isolated from clinical samples from corresponding local hospital and primary care patients were collected during the same year and compared with those of the sewage isolates by linear regression. Results E. coli resistance rates derived from hospital sewage and hospital patients strongly correlated (r2 = 0.95 for urine and 0.89 for blood samples), as did resistance rates in E. coli from municipal sewage and primary care urine samples (r2 = 0.82). Resistance rates in hospital sewage isolates were close to those in hospital clinical isolates while resistance rates in municipal sewage isolates were about half of those measured in primary care isolates. Resistance rates in municipal sewage isolates were more stable between sampling occasions than those from hospital sewage. Conclusion Our findings provide support for development of a low-cost, sewage-based surveillance system for antibiotic resistance in E. coli, which could complement current monitoring systems and provide clinically relevant antibiotic resistance data for countries and regions where surveillance is lacking.

Publisher

European Centre for Disease Control and Prevention (ECDC)

Subject

Virology,Public Health, Environmental and Occupational Health,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3