Author:
Li Z.Y.,Zhao P.X.,Wang C.L.,Mi Y.Z.
Abstract
In the context of the economic globalization, there is an increased disruption risk in the supply chain network due to the outsourcing, complexity and uncertainty. At the same time, the disruption may propagate across the entire supply chain network because of the interdependence. With the resource constraints, appropriate recovery strategies which can minimize the impact of disruption propagation and effectively improve the supply chain network resilience have attracted a great deal of attention. In this paper, we first construct the disruption propagation model considering the recovery strategy based on the characteristics of the competitiveness, time delay and underload cascading failure in the supply chain network. This model uses the memetic algorithm to determine the set of recovery nodes among all disruption nodes, which can minimize the impact of disruption propagation. And then, the simulation analysis is conducted on the synthetic network and the real-world supply chain network. We compare the proposed recovery strategy with other strategies (according to the genetic algorithm, according to the descending order of the load of failure node, according to the ascending order of the load of failure node, according to the descending order of the node degree, according to the ascending order of the node degree) and provide decision-making reference against supply chain disruptions.
Publisher
Production Engineering Institute (PEI), Faculty of Mechanical Engineering