Study on scheduling and path planning problems of multi-AGVs based on a heuristic algorithm in intelligent manufacturing workshop

Author:

Wang Y.J.,Liu X.Q.,Leng J.Y.,Wang J.J.,Meng Q.N.,Zhou M.J.

Abstract

In order to solve the scheduling and path planning problems of multi-AGVs in an intelligent manufacturing workshop, it is necessary to consider loading, unloading, and transporting the workpiece of each AGV at the same time. A step task scheduling and path optimization mode of AGV is proposed. The process is as follows: Firstly, a mathematical model algorithm and a material transportation task allocation algorithm based on the urgency degree of workpiece processing were established for the optimization objective, and all workpiece transportation task sequences between shelves and processing equipment were assigned to the corresponding AGV to generate the initial feasible path of each AGV. Then, the AGV collision detection and anti-collision algorithm are designed to plan the global collision-free walking path of multi-AGVs in the workshop, and the path can be dynamically adjusted according to the delivery task. The model is solved by a heuristic algorithm ant colony algorithm and MATLAB coding. Finally, an example is given to verify the effectiveness of the method, which can effectively solve the task allocation of multi-AGVs and avoid collision path planning based on the transportation task sequence, and improve the work efficiency of AGV. This research can provide a theoretical basis and practical reference for realizing multi AGVs collaborative scheduling by using AGV automated material transport system in an intelligent production workshop.

Publisher

Production Engineering Institute (PEI), Faculty of Mechanical Engineering

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research,Mechanical Engineering,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Heuristic Integrated Scheduling Algorithm Based on Improved Dijkstra Algorithm;Electronics;2023-10-10

2. Research on Optimal AGV Path of Intelligent Manufacturing Workshop Based on Improved Genetic Algorithm;2023 IEEE International Conference on Image Processing and Computer Applications (ICIPCA);2023-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3