A NSGA-II based approach for multi-objective optimization of a reconfigurable manufacturing transfer line supported by Digital Twin: A case study

Author:

Ali M.A.,Alarjani A.,Mumtaz M.A.

Abstract

In response to the wide range of customer demands, the concept of reconfigurable manufacturing systems (RMS) was introduced in the industrial sector. RMS enables producers to meet varying volumes of demand over varying time periods by swiftly adjusting its production capacity and functionality within a part family in response to abrupt market changes. In these circumstances, RMS are made to swiftly reconfigure their Reconfigurable Machine Tools (RMTs). RMTs are designed to have a variety of configurations that may be conditionally chosen and reconfigured in accordance with specific performance goals. However, the reconfiguration process is not an easy process, which entails optimization of several objectives and many of which are inherently conflictual. As a result, it necessitates real-time monitoring of the RMS's condition, which may be achieved by digital twinning, or the real-time capture of system data. The concept of using a digital replica of a physical system to provide real-time optimization is known as digital twin. This work considered a case study of discrete parts manufacturing on a reconfigurable single manufacturing transfer line (SMTL). Six manufacturing operations are required to be performed on the parts at six production stages. This work uses the Digital Twin (DT) based approach to assist a discrete multi-objective optimization problem for a reconfigurable manufacturing transfer line. This multi-objective optimization problem consists of four objective functions which is illustrated by using DT-based Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The innovative aspect of the current study is the use of a DT-based framework for RMS reconfiguration to produce the best optimum solutions. The produced real-time solutions will be of great assistance to the decision maker in selecting the appropriate real-time optimal solutions for reconfigurable manufacturing transfer lines.

Publisher

Production Engineering Institute (PEI), Faculty of Mechanical Engineering

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research,Mechanical Engineering,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3