Enhancing manufacturing excellence with Lean Six Sigma and zero defects based on Industry 4.0

Author:

Ly Duc M.,Hlavaty L.,Bilik P.,Martinek R.

Abstract

Improving quality, enhancing productivity, redesigning machining tools, eliminating waste in production, and shortening lead time are all objectives aimed at improving customer satisfaction and increasing profitability for manufacturing companies. This study combines lean manufacturing and six sigma techniques to form a technique called Lean Six Sigma (LSS) by using the DMAIC (Define-Measure-Analysis-Improve-Control) model. This study proposes to use statistical test models to analyze real data collected directly from the operator. The study proposes to use the Taguchi optimization technique to determine the optimal conditions for oil dipping tanks of molybdenum materials. In addition, the study also proposes a computer vision technique to recognize objects using color recognition techniques running on the LABVIEW software platform. This study builds a digital numerical control (DNC) model operating on digital signal processing techniques, linking the data of each process together. The results reduced the rate of defective parts in the whole processing stage from 6.5 % to zero defects, the whole processing line production capacity increased by 7.9 %, and the profit of the whole production line was USD 35762 per year. As a valuable external outcome, the conclusion of the LSS project fostered a spirit of continuous improvement. The utilization of research results from the research environment in the actual production setting is significantly enhanced for the operator. The LSS model is deployed with specific tasks and targets for each member of the LSS project team, and the processing conditions for each specific stage are optimized, such as the oil dipping process and hole grinding process. Industry 4.0 techniques, including computer vision, digital numerical control, and commercial software such as LabVIEW and MINITAB, are optimized for use, simplifying machining operations. Some proposed directions for future research are also presented in detail. For example, studying the improvement of the quality of the 220 V power supply through harmonic mitigation in processing factories is an intriguing area of investigation. Additionally, exploring data security for big data in the context of Industry 4.0 would be a valuable study to enhance customer satisfaction with big data technology in the future.

Publisher

Production Engineering Institute (PEI), Faculty of Mechanical Engineering

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research,Mechanical Engineering,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3