Latent class analysis for identification of occupational accident casualty profiles in the selected Polish manufacturing sector

Author:

Nowakowska M.,Pajecki M.

Abstract

The objective of the analysis is identifying profiles of occupational accident casualties as regards production companies to provide the necessary knowledge to facilitate the preparation and management of a safe work environment. Qualitative data characterizing employees injured in accidents registered in Polish wood processing plants over a period of 10 years were the subject of the research. The latent class analysis (LCA) method was employed in the investigation. This statistical modelling technique, based on the values of selected indicators (observed variables) divides the data set into separate groups, called latent classes, which enable the definition of patterns. A procedure which supports the decision as regards the number of classes was presented. The procedure considers the quality of the LCA model and the distinguishability of the classes. Moreover, a method of assessing the importance of indicators in the patterns description was proposed. Seven latent classes were obtained and illustrated by the heat map, which enabled the profiles identification. They were labelled as follows: very serious, serious, moderate, minor (three latent classes), slight. Some recommendations were made regarding the circumstances of occupational accidents with the most severe consequences for the casualties.

Publisher

Production Engineering Institute (PEI), Faculty of Mechanical Engineering

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research,Mechanical Engineering,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3