A dynamic job-shop scheduling model based on deep learning

Author:

Tian W.,Zhang H.P.

Abstract

Ideally, the solution to job-shop scheduling problem (JSP) should effectively reduce the cost of manpower and materials, thereby enhancing the core competitiveness of the manufacturer. Deep learning (DL) neural networks have certain advantages in handling complex dynamic JSPs with a massive amount of historical data. Therefore, this paper proposes a dynamic job-shop scheduling model based on DL. Firstly, a data prediction model was established for dynamic job-shop scheduling, with long short-term memory network (LSTM) as the basis; the Dropout technology and adaptive moment estimation (ADAM) were introduced to enhance the generalization ability and prediction effect of the model. Next, the dynamic JSP was described in details, and three objective functions, namely, maximum makespan, total device load, and key device load, were chosen for optimization. Finally, the multi-objective problem of dynamic JSP scheduling was solved by the improved multi-objective genetic algorithm (MOGA). The effectiveness of the algorithm was proved experimentally.

Publisher

Production Engineering Institute (PEI), Faculty of Mechanical Engineering

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research,Mechanical Engineering,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3