Optimizing smart manufacturing systems using digital twin
-
Published:2023-12-28
Issue:4
Volume:18
Page:475-485
-
ISSN:1854-6250
-
Container-title:Advances in Production Engineering & Management
-
language:
-
Short-container-title:Adv produc engineer manag
Author:
Ojstersek R.,Javernik A.,Buchmeister B.
Abstract
Presented paper investigates the application of digital twins for the optimisation of intelligent manufacturing systems and focuses on the comparison between simulation modelling results and real-world production conditions. A digital twin was created in the Simio software environment using a data-driven simulation model derived from a real-world production system. Running the digital twin in real time, which was displayed graphically, facilitated the analysis of key parameters, including the number of finished products, average flow time, workstation utilization and product quality. The discrepancies were attributed to the use of random distributions of input data in the dynamic digital twin, as opposed to the long-term measurements and averages in the real-world system. Despite the limitations in the case study, the results underline the financial justification and predictive capabilities of digital twins for optimising production systems. Real-time operation enables continuous evaluation and tracking of parameters and offers high benefits for intelligent production systems. The study emphasises the importance of accurate selection of input data and warns that even small deviations can lead to inaccurate results. Finally, the paper high-lights the role of digital twins in optimising production systems and argues for careful consideration of input data. It highlights the importance of analysing real-world production systems and creating efficient simulation models as a basis for digital twin solutions. The results encourage extending the research to different types of production, from job shop to mass production, in order to obtain a comprehensive optimisation perspective.
Publisher
Production Engineering Institute (PEI), Faculty of Mechanical Engineering
Subject
Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research,Mechanical Engineering,Nuclear and High Energy Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献