Real-time scheduling for dynamic workshops with random new job insertions by using deep reinforcement learning

Author:

Sun Z.Y.,Han W.M.,Gao L.L.

Abstract

Dynamic real-time workshop scheduling on job arrival is critical for effective production. This study proposed a dynamic shop scheduling method integrating deep reinforcement learning and convolutional neural network (CNN). In this method, the spatial pyramid pooling layer was added to the CNN to achieve effective dynamic scheduling. A five-channel, two-dimensional matrix that expressed the state characteristics of the production system was used to capture the state of the real-time production of the workshop. Adaptive scheduling was achieved by using a reward function that corresponds to the minimum total tardiness, and the common production dispatching rules were used as the action space. The experimental results revealed that the proposed algorithm achieved superior optimization capabilities with lower time cost than that of the genetic algorithm and could adaptively select appropriate dispatching rules based on the state features of the production system.

Publisher

Production Engineering Institute (PEI), Faculty of Mechanical Engineering

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research,Mechanical Engineering,Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unrelated Parallel-Machine Scheduling Problem with Time-Changing Effects and Dynamic Job Arrivals;Journal of Shanghai Jiaotong University (Science);2024-08-24

2. Design patterns of deep reinforcement learning models for job shop scheduling problems;Journal of Intelligent Manufacturing;2024-07-20

3. Research on HFS Scheduling Based on D3QN-RepVGG-CBAM Algorithm;Proceedings of the 5th International Conference on Computer Information and Big Data Applications;2024-04-26

4. An improved multi-objective firefly algorithm for integrated scheduling approach in manufacturing and assembly considering time-sharing step tariff;Advances in Production Engineering & Management;2024-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3