Bone drilling with internal gas cooling: Experimental and statistical investigation of the effect of cooling with CO2 on reduction of temperature rise due to drill bit wear

Author:

Shakouri E.,Haghighi Hassanalideh H.,Fotuhi S.

Abstract

Bone drilling is a major stage in immobilization of the fracture site. During bone drilling operations, the temperature may exceed the allowable limit of 47 °C, causing irrecoverable damages of thermal necrosis and seriously threatening the fracture treatment. One of the parameters affecting the temperature rise of the drilling site is the frequency of applying the drill bit and its extent of wear. The present study attempted to mitigate the effect of drill bit wear on the bone temperature rise through the internal gas cooling method via CO2 and to reduce the risk of incidence of thermal necrosis. To this end, drilling tests were conducted at three rotational speeds 1000, 2000, and 3000 r·min-1 in two states of without cooling and with internal gas cooling by CO2 through an internal coolant carbide drill bit, along with six drill bit states (new, used 10, 20, 30, 40, and 50 times) on a bovine femur bone. The results indicated that in the internal gas cooling state, as the number of drill bit applications increased from the new state to more than 50 times, the temperature of the hole site increased on average by ΔT = 2-3 °C (n = 1000 r·min-1), ΔT = 5-8 °C (n = 2000 r·min-1), and ΔT = 5-7 °C (n = 3000 r·min-1). Furthermore, the internal gas cooling method was able to significantly reduce the effect of the drill bit wear on the temperature rise of the drilling site and to resolve the risk of incidence of thermal necrosis regardless of the process parameters for drilling operations.

Publisher

Production Engineering Institute (PEI), Faculty of Mechanical Engineering

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research,Mechanical Engineering,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3