Evaluation of Optimal Taper of Immediately Loaded Wide-Diameter Implants: A Finite Element Analysis

Author:

Atieh Momen A.1,Shahmiri Reza A.1

Affiliation:

1. Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand.

Abstract

This study aimed to evaluate the effects of different tapering angles of an immediately loaded wide-diameter implant on the stress/strain distribution in bone and implant after implant insertion in healed or fresh molar extraction sockets. A total of 10 finite element (FE) implant-bone models, including 8.1-mm diameter implant, superstructure, and mandibular molar segment, were created to investigate the biomechanical behavior of different implant taper angles in immediate and delayed placement conditions. The degrees of implant taper ranged from 2° to 14°, and the contact conditions between the immediately loaded implants and bone were set with frictional coefficients (μ) of 0.3 in the healed models and 0.1 in the extracted models. Vertical and lateral loading forces of 189.5 N were applied in all models. Regardless of the degree of implant tapering, immediate loading of wide-diameter implants placed in molar extraction sockets generated higher stress/strain levels than implants placed in healed sockets. In all models, the von Mises stresses and strains at the implant surfaces, cortical bone, and cancellous bone increased with the increasing taper angle of the implant body, except for the buccal cancellous bone in the healed models. The maximum von Mises strains were highly concentrated on the buccal cortical struts in the extracted models and around the implant neck in the healed models. The maximum von Mises stresses on the implant threads were more concentrated in the non-tapered coronal part of the 11° and 14° tapered implants, particularly in the healed models, while the stresses were more evenly dissipated along the implant threads in other models. Under immediate loading conditions, the present study indicates that minimally tapered implants generate the most favorable stress and strain distribution patterns in extracted and healed molar sites.

Publisher

American Academy of Implant Dentistry

Subject

Oral Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3