Electrochemical Behavior of Titanium in Artificial Saliva: Influence of pH

Author:

Abey Savithri1,Mathew Mathew T.2,Lee Damian J.3,Knoernschild Kent L.3,Wimmer Markus A.2,Sukotjo Cortino3

Affiliation:

1. Department of Restorative Dentistry, School of Dentistry, Indiana University, Indianapolis, Ind.

2. Department of Orthopedics, Rush University Medical Center, Chicago, Ill.

3. Department of Restorative Dentistry, Comprehensive Dental Implant Center, University of Illinois at Chicago, College of Dentistry, Chicago, Ill.

Abstract

Titanium is the most common material chosen for dental implants because it is highly corrosion resistant because it constantly reforms a protective passive film layer. The formation and composition of the passive film layer is dependent on the environmental conditions. If the stable oxide layer is damaged, the titanium surface underneath can corrode. The purpose of this study was to determine if basic corrosion of commercially pure titanium (CpTi) alloy in artificial saliva was affected by pH and to understand the corrosion kinetics/mechanisms of CpTi as a function of pH. In this study, titanium alloy discs were subjected to corrosion tests. Before the tests, all samples were cleaned and polished using standard metallographic preparation methods. Artificial saliva was used as the testing medium. The following pH values were tested: 3.0, 4.5, 6.0, 6.5, 7.5, and 9.0. Different pH values were achieved by adding lactic acid (acidic) or NaOH (basic) in appropriate amounts. Potentiodynamic curves indicated behavior change at each pH. In addition, the corrosion current density value determined from the potentiodynamic curve exhibited the poorest corrosion resistance for pH 7.5. The Nyquist plot (from the electrochemical impedance spectroscopy results) indicated that pH 7.5 had the poorest resistance. Scanning electron microscopy images indicated that pH levels of 6.5, 7.5, and 9.0 had considerable surface corrosion. The results showed that the media's pH significantly influenced the corrosion behavior of CpTi. The poor corrosion behavior at the neutral pHs invites some concerns and highlights the need for further study.

Publisher

American Academy of Implant Dentistry

Subject

Oral Surgery

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3