Author:
Mekayarajjananonth Trakol,Chitcharus Nattinee,Winkler Sheldon,Bogert Meredith C.
Abstract
Abstract
In vitro and in vivo testing suggest that fiber posts may reduce the incidence of root fractures of endodontically treated teeth. The purpose of this in vitro study was to compare the effect of fiber post height in resin composite cores on the fracture resistance of endodontically treated teeth. Forty maxillary central incisors were randomly divided into 2 control groups (Groups 1 and 2) of 5 teeth each, and 3 experimental groups (Groups 3, 4, and 5) of 10 teeth each. The teeth in Group 1 had their opening restored with composite resin, the teeth in Group 2 were restored with quartz fiber posts without resin composite cores, and the teeth in Groups 3, 4, and 5 were restored with quartz fiber posts of 2, 4, and 6 mm high, respectively, in 6-mm resin composite cores. Ceramic crowns were fabricated for the specimens. Specimens were positioned in a mounting device and aligned at a 130-degree angle to the long axis of each tooth. A universal testing machine was used to apply constant load at a crosshead speed of 0.5 mm/min until failure occurred. The highest fracture load and mode of failure of each specimen was recorded. The highest fracture resistance force was observed in Group 2 (290.38 ± 48.45 N) and decreased, respectively, in Group 1 (238.98 ± 26.26 N), Group 5 (228.35 ± 58.79 N), Group 4 (221.43 ± 38.74 N), and Group 3 (199.05 ± 58.00 N). According to one-way analysis of variance (ANOVA) and Duncan's test (P ≤ .05), there was no statistically significant increase in the force from Group 3 to Group 5, and the force in Group 2 was significantly higher than that of the experimental groups. There was no statistical significance difference in force among the experimental groups, and the amount of residual tooth structure was found to be the critical factor in fracture resistance. The results suggest that endodontically treated teeth should be restored with the longest possible post height while preserving maximum tooth structure.
Publisher
American Academy of Implant Dentistry