Affiliation:
1. Department of Oral and Maxillofacial Surgery and Periodontology, The School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil.
2. Department of Oral and Maxillofacial Surgery, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Israel.
3. Department of Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Israel.
Abstract
Fresh frozen bone allografts (FFB) have become an alternative for bone augmentation in the past decades, especially because of the absence of recent reports of disease transmission or immunologic reactions when it is used. The aim of this prospective controlled study is to evaluate volumetric changes of newly created bone following reconstruction of the atrophic posterior mandible. Twenty consecutive patients presenting for reconstruction of posterior mandibular alveolar bone ridge width ≤6.0 mm and/or height ≤6.0 who met all inclusion and exclusion criteria were included. FFB blocks were used. The main outcome variable investigated was bone volume dynamics. Vertical, horizontal, and 3-dimensional bone gain data were measured from computerized tomography scans. The main predictor variable was time evaluated at 3 points: immediately after surgery (T1), at implant placement (T2), and 1 year after functional loading (T3). Secondary outcome parameters evaluated were implant survival, histologic findings, and microtomographic morphometry. The study included 28 hemi-mandibles, 50 FFB bone blocks, and 15 female and 5 male patients (mean age, 51.8 years). Block and implant survival rates were 100% and 96%, respectively, after 31.75 months of follow-up. Vertical and horizontal bone gain at T2 was 5.15 and 6.42 mm, respectively. Volumetric resorption was 31% at T2, followed by an additional 10% reduction at T3. Histologic evaluation showed newly formed vital bone in intimate contact with the remaining FFB. Microtomography revealed 31.8% newly formed bone, 14.5% remaining grafted bone, and 53.7% connective tissue and bone marrow. Thus, FFB blocks may lead to new bone formation and consolidation, with satisfactory volumetric bone maintenance, allowing implant-supported rehabilitation with high success rates.
Publisher
American Academy of Implant Dentistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献