Goat Model for Direct Visualizing the Effectiveness of Detaching Sinus Mucosa in Real Time During Crestal Maxillary Sinus Floor Elevation

Author:

Fan Jiadong1,Hu Pin1,Li Yanfeng,Wang Fuli,Dong Xinming,Liu Bin,Liu Le,Zhang Yue,Gu Xiangmin

Affiliation:

1. Department of Stomatology, First Affiliated Hospital of PLA General Hospital, Beijing, China.

Abstract

The procedure of crestal maxillary sinus floor elevation presents a great challenge to the field of implant dentistry. Due to the limited visualization in this procedure, the effectiveness of detaching sinus mucosa could not be assessed in real time. We recently developed an ex vivo goat sinus model by cutting the goat residual skulls along four lines determined from computerized tomography (CT) scans, extracting the maxillary premolar or molar teeth, and preparing implant socket in the maxilla. The generated ex vivo goat sinus models exposed the maxilla and the whole maxillary sinus mucosa, thus enabling real-time observation of detaching maxillary sinus mucosa via directly visualizing the working situation of sinus lift tool in the models and directly measuring the length of detached mucosa and space volume generated under the elevated sinus mucosa. One commercially available umbrella-shaped sinus lift curette was used to detach the maxillary sinus mucosa to evaluate the effectiveness of the ex vivo goat sinus models. The results showed that this curette could detach the sinus mucosa 3.75 mm in length in the mesiodistal direction and 2.81 mm in the buccal-palatal direction. Moreover, a space volume of 52.7 μl could be created under the elevated sinus mucosa in the goat ex vivo models. All the experimental results suggested that this ex vivo goat sinus model might be useful in the evaluation of improved or newly designed sinus lift tools for elevating the maxillary sinus mucosa via the crestal approach.

Publisher

American Academy of Implant Dentistry

Subject

Oral Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3