Particulate Coral Hydroxyapatite Sheltered by Titanium Mesh for Localized Alveolar Rehabilitation After Onlay Graft Failure: A Case Report

Author:

Zhou Miao1,Li Shu-yi1,Terheyden Hendrik2,Cao Shuai-shuai1,Che Yue-juan3,Geng Yuan-ming4

Affiliation:

1. Department of Digital Dental Center, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, P.R. China.

2. Department of Oral and Maxillofacial Surgery, Red Cross Hospital, Kassel, Germany.

3. Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.

4. Department of Stomatology, Zhujiang Hospital of Southern Medical University, Guangzhou, P.R. China.

Abstract

Reconstruction of bone loss in the alveolar ridge has long been challenging. Autologous bone grafts are considered as the “golden standard,” while little research has focused on how to repair pronounced alveolar bone defects after autologous bone graft failure. The aim of this study was to detail a method based on the titanium mesh technique coupled with particulate coral hydroxyapatite to solve the onlay graft failure. With bone deficiency in the No. 11 and No. 24–25 regions, we harvested 2 autologous bone blocks for reconstruction. Two weeks after transplantation, the graft in the No. 11 region had healed uneventfully, while the graft in the anterior mandible became infected because of soft tissue dehiscence. After removal of the failed autologous bone block, pure coral hydroxyapatite stabilized within titanium mesh was used for alveolar rehabilitation. Six months later, the width of the local alveolar bone was evaluated. After the titanium mesh was removed, a biopsy was performed to study bone regeneration by micro computerized tomography and histology, following by a standard Straumann implant insertion. Although there was wound dehiscence 14 days after bone augmentation, repeated local rinsing and anti-inflammation therapy controlled the inflammatory reaction. The total horizontal bone gain was 4.2 ± 0.5 mm. Micro computerized tomography revealed that the closer the coral hydroxyapatite was to the host bone, the more was resorbed and the more bone regenerated. Histology showed mature lamellar bone structures, with evident residual coral hydroxyapatite. A 3-year follow-up revealed stable bone around the dental implant and successful function of the implant-born prosthesis. This study proposes that the method of particulate coral hydroxyapatite sheltered by titanium mesh is a promising solution in handling alveolar bone augmentation failure. More cases are needed for further research to form an efficient treatment procedure.

Publisher

American Academy of Implant Dentistry

Subject

Oral Surgery

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3