Determination of zinc content in insulin products by inductively coupled plasma mass spectrometry

Author:

Shvetsova Yu. N.1ORCID,Erina A. A.1ORCID,Khorolskaya E. A.1ORCID,Zhigilei E. S.1ORCID,Kuz’mina N. E.1ORCID

Affiliation:

1. Scientific Centre for Expert Evaluation of Medicinal Products

Abstract

Scientific relevance. Zinc content is a quality attribute of insulin products. The State Pharmacopoeia of the Russian Federation requires that it should be determined by flame atomic absorption spectrometry (FAAS). However, many pharmaceutical manufacturers currently prefer inductively coupled plasma mass spectrometry (ICP-MS), which is considered the most promising method for pharmaceutical and biomedical elemental analysis.Aim. The study aimed to develop and validate an ICP-MS-based analytical procedure for zinc content determination in insulin products.Materials and methods. The study focused on human insulin, insulin lispro, insulin aspart, and insulin glargine in the form of active substances, suspensions for subcutaneous injection, and solutions for injection from different manufacturers. Zinc content was determined on an Agilent 7900 ICP-MS; the analysis included 66Zn signal intensity registration.Results. The study compared the results of zinc content determination in test samples with either hydrochloric or nitric acid used as the solvent for sample preparation. The authors selected the experimental conditions to achieve relative standard deviations (RSDs) of not more than 2.5% for the measurements. The ICP-MSbased analytical procedure was validated for its specificity, linearity, accuracy, and precision in the range of 0.4–1.6 mg/L. The authors compared the measurements of zinc content made using FAAS and ICP-MS.Conclusions. The ICP-MS-based analytical procedure for zinc content determination in insulin products meets the validation criteria. This analytical procedure, as developed and validated, may be used in the quality control of medicinal products in the Russian healthcare system and at the batch release stage of pharmaceutical manufacturing.

Publisher

SCEEMP

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3