Mitoxantrone Quantification by HPLC-MS/MS in Caco-2 Culture Media

Author:

Tranova Yu. S.1ORCID,Shchulkin A. V.1ORCID,Chernykh I. V.1ORCID,Mylnikov P. Yu.1ORCID,Slepnev A. A.1ORCID,Yakusheva E. N.1ORCID

Affiliation:

1. I.P. Pavlov Ryazan State Medical University

Abstract

Mitoxantrone is a marker substrate of breast cancer resistance protein (BCRP). BCRP is involved in a number of pharmacokinetic drug-drug interactions. The transporter’s possible saturability makes it advisable to use low concentrations of mitoxantrone for in vitro studies. Consequently, mitoxantrone quantification requires   a method with high sensitivity.The aim of the study was to develop and validate a procedure for mitoxantrone quantification in Caco-2 culture media by HPLC-MS/MS.Materials and methods.  The  authors  used  an  Ultimate  3000  HPLC  system  and a TSQ Fortis triple quadrupole mass spectrometer by Thermo Fisher Scientific and a Selectra C18 column (4.6×100 mm, 5 μm, 100 Å) by United Chemical Technologies. The elution ran in a gradient mode with a mobile phase of 1% formic acid solution and methanol. Experimental parameters were as follows: eluent flow rate, 0.3 mL/min; separation column temperature, 35 °C; injection volume, 5  μL; ana lysis time, 10 min; approximate mitoxantrone retention time, 5.51 min. The sample preparation involved protein precipitation from the culture medium with methanol, followed by centrifugation at 13,000 g for 10 min. The detection was performed using electrospray ionisation in the positive ion mode. Detection parameters were   as follows: electrospray voltage, 3700 V; sheath gas flow rate, 50 L/min; auxiliary    gas flow rate, 10 L/min; sweep gas flow rate, 1 L/min; ion-transfer tube temperature, 300 °C; and evaporator temperature, 350 °C. The detection was set at mass transitions of m/z 455 to 88.2 and m/z 455 to 358.1, with the collision energy for these transitions amounting to 25 V and 18 V, respectively. The source fragmentation was at 0, and the CID gas pressure was at 2 mTorr.Results. The analytical procedure showed selectivity, high sensitivity (limit of detection, 10 nmol/L; lower limit of quantification, 50 nmol/L), accuracy, precision, and linearity in the concentration range of 50–1000 nmol/L. The authors observed no carryover or matrix effects. A simulation of real-life storage conditions demonstrated high stability of mitoxantrone samples. Thus, the analytical procedure enables preclinical evaluation of medicinal product effects on the functional activity of BCRP, based on assessing the transcellular mitoxantrone transport in the presence of a test product.Conclusion. The authors developed and validated the analytical procedure for mitoxantrone quantification in Caco-2 culture media by HPLC-MS/MS.

Publisher

SCEEMP

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3