Real Time Identification of Railway Track Surface Faults using Canny Edge Detector and 2D Discrete Wavelet Transform

Author:

Shah Ali Akbar,Chowdhry Bhawani S.,Memon Tayab D.,Kalwar Imtiaz H.,Ware J. AndrewORCID

Abstract

Usually, railway accidents are caused by train derailment, the mechanical failure of tracks, such as broken rails often caused by lack of railway condition monitoring. Such monitoring could identify track surface faults, such as squats, that act as a catalyst for the track to crack and ultimately break. The research presented in this paper enables real-time identification of railway track faults using image processing techniques such as Canny edge detection and 2D discrete wavelet transformation. The Canny edge detection outperforms traditional track damage detection techniques including Axle Based Acceleration using Inertial Measurement Units and is as reliable as Fiber Bragg Grating. The Canny edge detection employed can identify squats in real-time owing to its specific threshold amplitude using a camera module mounted on a specially designed handheld Track Recording Vehicle (TRV). The 2D discrete wavelet transformation validates the insinuation of the Canny edge detector regarding track damage and furthermore determines damage severity, by applying high sub band frequency filter. The entire algorithm works on a Raspberry Pi 3 B+ utilizing an OpenCV API. When tested using an actual rail track, the algorithm proved reliable at determining track surface damage in real-time. Although wavelet transformation performs better than Canny edge detection in terms of determining the severity of track surface damage, it has processing overheads that become a bottleneck in real-time. To overcome this deficiency a very effective two-stage process has been developed.

Publisher

International Association for Educators and Researchers (IAER)

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Railway Track Multicomponent Segmentation Based on Residual Contextual Transformer;IEEE Sensors Journal;2024-07-15

2. Railway surface faults detection using dark field illumination and machine learning;AIP Conference Proceedings;2024

3. SafePath: Artificial Intelligence Based Pothole Detection Application;2023 4th International Conference on Smart Electronics and Communication (ICOSEC);2023-09-20

4. Railway Track Joints and Fasteners Fault Detection using Principal Component Analysis;2023 International Conference on Robotics and Automation in Industry (ICRAI);2023-03-03

5. Discrete Wavelet Transform: A breakthrough in segmentation of CT scans for Intracranial Hemorrhages;2023 International Conference on Artificial Intelligence and Smart Communication (AISC);2023-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3