Fuzzy-based Adaptive Framework for Module Advising Expert System

Author:

Alhabashneh Obada

Abstract

In the enrolment process, selecting the right module and lecturer is very important for students. The wrong choice may put them in a situation where they may fail the module. This could lead to a more complicated situation, such as receiving an academic warning, being de-graded, as well as withdrawn from the program or the university. However, module advising is time-consuming and requires knowledge of the university legislation, program requirements, modules available, lecturers, modules, and the student's case. Therefore, the creation of effective and efficient systems and tools to support the process is highly needed. This paper discusses the development of a fuzzy-based framework for the expert recommender system for module advising. The proposed framework builds three main spaces which are: student-space (SS), module-space (MS), and lecturer-space (LS). These spaces are used to estimate the risk level associated with each student, module, and lecturer. The framework then associates each abnormal student case in the students’ grade history with the estimated risk level in the SS, MS, and LS involved in that particular case. The fuzzy-based association-rule learning is then used to extract the dominant rules that classify the consequent situation for each eligible module if it is to be taken by the student for a specific semester. The proposed framework was developed and tested using real-life university data which included student enrollment records and student grade records. A five-fold cross-validation process was used for testing and validating the classifying accuracy of the fuzzy rule base. The fuzzy rule base achieved a 92% accuracy level in classifying the risk level for enrolling on a specific module for a specific student case. However, the average classifying accuracy achieved was 89.2% which is acceptable for this problem domain as it involves human behavior modeling and decision making.

Publisher

International Association for Educators and Researchers (IAER)

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Decision Support System for Higher Education Institutions;2023 9th International Conference on Signal Processing and Intelligent Systems (ICSPIS);2023-12-14

2. Enhanced type-2 Wang-Mendel Approach;Journal of Experimental & Theoretical Artificial Intelligence;2022-11-12

3. Online Course Registration and Advisory Systems Based on Students’ Personal and Social Constraints;Kurdistan Journal of Applied Research;2021-12-15

4. Expert Systems in Academic Advising;Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2021;2021-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3