A Novel Data Aggregation Mechanism using Reinforcement Learning for Cluster Heads in Wireless Multimedia Sensor Networks

Author:

Uddin JiaORCID

Abstract

Wireless multimedia sensor networks (WMSNs) are getting used in numerous applications nowadays. Many robust energy-efficient routing protocols have been proposed to handle multimedia traffic-intensive data like images and videos in WMSNs. It is a common trend in the literature to facilitate a WMSN with numerous sinks allowing cluster heads (CHs) to distribute the collected data to the adjacent sink node for delivery overhead mitigation. Using multiple sink nodes can be expensive and may incur high complexity in routing. There are many single-sink cluster-based routing protocols for WMSNs that lack in introducing optimal path selection among CHs. As a result, they suffer from transmission and queueing delay due to high data volume. To address these two conflicting issues, we propose a data aggregation mechanism based on reinforcement learning (RL) for CHs (RL-CH) in WMSN. The proposed method can be integrated to any of the cluster-based routing protocol for intelligent data transmission to sink node via cooperative CHs. Proposed RL-CH protocol performs better in terms of energy-efficiency, end-to-end delay, packet delivery ratio, and network lifetime. It gains 17.6% decrease in average end-to-end delay and 7.7% increase in PDR along with a network lifetime increased to 3.2% compared to the evolutionary game-based routing protocol which has been used as baseline.

Publisher

International Association for Educators and Researchers (IAER)

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3