A Deep Learning-based Dengue Mosquito Detection Method Using Faster R-CNN and Image Processing Techniques

Author:

Siddiqua Rumali,Rahman Shakila,Uddin Jia

Abstract

Dengue fever, a mosquito-borne disease caused by dengue viruses, is a significant public health concern in many countries especially in the tropical and subtropical regions. In this paper, we introduce a deep learning-based model using Faster R-CNN with InceptionV2 accompanied by image processing techniques to identify the dengue mosquitoes. Performance of the proposed model is evaluated using a custom mosquito dataset built upon varying environments which are collected from the internet. The proposed Faster R-CNN with InceptionV2 model is compared with other two state-of-art models, R-FCN with ResNet 101 and SSD with MobilenetV2. The False positive (FP), False negative (FN), precision and recall are used as performance measurement tools to evaluate the detection accuracy of the proposed model. The experimental results demonstrate that as a classifier the Faster- RCNN model shows 95.19% of accuracy and outperforms other state-of-the-art models as R-FCN and SSD model show 94.20% and 92.55% detection accuracy, respectively for the test dataset.

Publisher

International Association for Educators and Researchers (IAER)

Subject

Electrical and Electronic Engineering,General Computer Science

Reference35 articles.

1. Ayan K. Biswas, Nahian A. Siddique, Bing B. Tian, Enoch Wong, Kevin A. Caillouët et al., “Design of a Fiber-Optic Sensing Mosquito Trap”, IEEE Sensors Journal, Online ISSN: 1530-437X, E- ISSN: 1558-1748, pp. 4423-4431, Vol. 13, No. 11, November 2013, Published by IEEE, DOI: 10.1109/JSEN.2013.227427, Available: https://ieeexplore.ieee.org/document/6566019.

2. Mona Minakshi, Pratool Bharti and Sriram Chellappan, ”Leveraging Smart-Phone Cameras and Image Processing Techniques to Classify Mosquito Species”, in Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services 2018 (MobiQuitous '18), November 2018, Published by Association for Computing Machinery, New York, NY, USA, pp. 77–86. DOI: 10.1145/3286978.3286998, Available: https://dl.acm.org/doi/abs/10.1145/3286978.3286998.

3. Samir Bhatt, Peter W. Gething, Oliver J. Brady, Jane P. Messina, Andrew W. Farlow et al., “The global distribution and burden of dengue”, Nature, PMID: 23563266, pp. 504-507, Vol. 496, No. 7446, 25th April 2013, DOI: 10.1038/nature12060, Available: https://pubmed.ncbi.nlm.nih.gov/23563266/.

4. Suk-Ju Hong, Sang-Yeon Kim, Eungchan Kim, Chang-Hyup Lee, Jung-Sup Lee et al., “Moth Detection from Pheromone Trap Images Using Deep Learning Object Detectors”, Agriculture, p. 170, Vol. 10, No. 5, 14th May 2020, Published by MDPI, DOI: 10.3390/agriculture10050170, Available: https://www.mdpi.com/2077-0472/10/5/170.

5. Md. Nazmus Sabab, Mohammad Abidur Rahman Chowdhury, S. M. Mahsanul Islam Nirjhor and Jia Uddin, “Bangla Speech Recognition Using 1D-CNN and LSTM with Different Dimension Reduction Techniques”, Emerging Technologies in Computing. iCETiC 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Print ISBN: 978-3-030-60035-8, Online ISBN: 978-3-030-60036-5, pp. 158-169, Vol. 332, 29th September 2020, Published by Springer, Cham, DOI: 10.1007/978-3-030-60036-5_11, Available at: https://link.springer.com/chapter/10.1007/978-3-030-60036-5_11.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3