Abstract
We prove a maximal Fourier restriction theorem for hypersurfaces in \(\mathbb{R}^{d}\) for any dimension \(d\geq 3\) in a restricted range of exponents given by the Tomas-Stein theorem (spheres being the most canonical example). The proof consists of a simple observation. When \(d=3\) the range corresponds exactly to the full Tomas-Stein one, but is otherwise a proper subset when \(d>3\). We also present an application regarding the Lebesgue points of functions in \(\mathcal{F}(L^p)\) when \(p\) is sufficiently close to 1.
Publisher
University of Zagreb, Faculty of Science, Department of Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献