Author:
Capparelli Stefano, ,Meurman Arne,Primc Andrej,Primc Mirko, , ,
Abstract
In this paper we conjecture combinatorial Rogers-Ramanujan type colored partition identities related to standard representations of the affine Lie algebra of type \(C^{(1)}_\ell\), \(\ell\geq2\), and we conjecture similar colored partition identities with no obvious connection to representation theory of affine Lie algebras.
Publisher
University of Zagreb, Faculty of Science, Department of Mathematics
Reference21 articles.
1. K. Alladi, G. E. Andrews and B. Gordon, Refinements and generalizations of Capparelli's conjecture on partitions, J. Algebra 174 (1995), 636-658.
2. G. E. Andrews, An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 4082-4085.
3. G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and Its Applications, Vol. 2, Addison-Wesley, 1976.
4. M. K. Bos, Coding the principal character formula for affine Kac-Moody Lie algebras, Math. Comp. 72 (2003), 2001-2012.
5. K. Bringmann, C. Jennings-Shaffer and K. Mahlburg, Proofs and reductions of Kanade and Russell partition identities, J. Reine Angew. Math. 766 (2020), 109-135.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献