On a generalization of some instability results for Riccati equations via nonassociative algebras

Author:

Boujemaa Hamza, ,Ferčec Brigita,

Abstract

In [28], for any real non associative algebra of dimension \(m\geq2\), having \(k\) linearly independent nilpotent elements \(n_{1}\), \(n_{2}\), …, \(n_{k},\) \(1\leq k\leq m-1\), Mencinger and Zalar defined near idempotents and near nilpotents associated to \(n_{1}\), \(n_{2}\), …, \(n_{k}\). Assuming \(\mathcal{N}_{k}\mathcal{N}_{k}=\left\{ 0\right\}\), where \(\mathcal{N} _{k}=\operatorname*{span}\left\{ n_{1},n_{2},\ldots,n_{k}\right\} \), they showed that if there exists a near idempotent or a near nilpotent, called \(u\), associated to \(n_{1},n_{2},\ldots,n_{k}\) verifying \(n_{i}u\in\mathbb{R}n_{i},\) for \(1\leq i\leq k\), then any nilpotent element in \(\mathcal{N}_{k}\) is unstable. They also raised the question of extending their results to cases where \(\mathcal{N}_{k}\mathcal{N}_{k}\not =\left\{ 0\right\} \) with \(\mathcal{N}_{k}\mathcal{N}_{k}\subset\mathcal{N}_{k}\mathcal{\ }\)and to cases where \(\mathcal{N}_{k}\mathcal{N}_{k} \not\subset \mathcal{N}_{k}.\) In this paper, positive answers are emphasized and in some cases under the weaker conditions \(n_{i}u\in\mathcal{N}_{k}\). In addition, we characterize all such algebras in dimension 3.

Publisher

University of Zagreb, Faculty of Science, Department of Mathematics

Subject

General Mathematics

Reference28 articles.

1. Z. Balanov and Y. Krasnov, Complex structures in algebra, topology and differential equations, Georgian Math. J. 21 (2014), 249-260.

2. H. Boujemaa and S. El Qotbi, On unbounded polynomial dynamical systems, Glas. Mat. Ser. III 53(73) (2018), 343-357.

3. H. Boujemaa, S. El Qotbi and H. Rouiouih, Stability of critical points of quadratic homogeneous dynamical systems, Glas. Mat. Ser. III 51(71) (2016), 165-173.

4. I. Burdujan, Automorphisms and derivations of homogeneous quadratic differential systems, ROMAI J. 6 (2010), 15-28.

5. I. Burdujan, Classification of quadratic differential systems on \(\Bbb R^3\) having a nilpotent of order 3 derivation, Libertas Math. 29 (2009), 47-64.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3