Author:
Adédji Kouèssi Norbert, ,Trebješanin Marija Bliznac,Filipin Alan,Togbé Alain, , ,
Abstract
Let \(a\) and \(b=ka\) be positive integers with \(k\in \{2, 3, 6\},\) such that \(ab+4\) is a perfect square. In this paper, we study the extensibility of the \(D(4)\)-pairs \(\{a, ka\}.\) More precisely, we prove that by considering families of positive integers \(c\) depending on \(a,\) if \(\{a, b, c, d\}\) is a set of positive integers which has the property that the product of any two of its elements increased by \(4\) is a perfect square, then \(d\) is given by
d=a+b+c+1/2(abc±√((ab+4)(ac+4)(bc+4))).
As a corollary, we prove that any \(D(4)\)-quadruple tht contains the pair \(\{a, ka\}\) is regular.
Publisher
University of Zagreb, Faculty of Science, Department of Mathematics
Reference14 articles.
1. K. N. Adédji, A. Filipin and A. Togbé, The problem of the extension of \(D(4)\)-triple \(\{1, b, c\}\), Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 26 (2022), 21-43.
2. K. N. Adédji, B. He, A. PintĂ©r and A. Togbé, On the Diophantine pair \(\{a, 3a\}\), J. Number Theory 227 (2021), 330-351.
3. Lj. Baćić and A. Filipin, On the extensibility of \(D(4)\)-pair \(\{k-2,k+2\}\), J. Comb. Number Theory 5 (2013), 181-197.
4. Lj. Baćić and A. Filipin, A note on the number of \(D(4)\)-quintuples, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 18 (2014), 7-13.
5. A. Baker and G. Wüstholz, Logarithmic form and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.