Glial Cell Architecture Dynamics in Dentate Gyrus and CA4 Area of Wistar Rat Hippocampus Following 20-minute Occlusion of Common Carotid Arteries

Author:

Gorbunova Anna V.1,Avdeev Dmitry B.1,Stepanov Sergey S.1,Akulinin Victor A.1,Stepanov Alexander S.1,Shoronova Anastasia Yu.1,Samsonov Artem A.1

Affiliation:

1. Omsk State Medical University, Ministry of Health of Russia

Abstract

Aim. To study the distribution and spatial organization of dentate gyrus (DG) astrocytes and CA4 area of hippocampus of Wistar rats following 20-minute occlusion of common carotid arteries (OCCA) compared to sham-operated control animals.Material and methods. Histological (Nissl staining with hematoxylin and eosin), immunohistochemical (GFAP, MAP-2) and morphometric methods were used. Astrocytes and neurons in control (sham-operated animals, n = 5) group, after 6 hours (n=5), 1 days (n=5), 3 days (n=5), 7 days (n=5), 14 days (n=5) and 30 days (n=5) after 20-minute OCCA were studied on thin (4 µm) serial frontal sections of the hippocampus. Fractal analysis (ImageJ 1.52; fraclac 2.5 plugin) was used to obtain additional quantitative information on the spatial organization of astrocyte networks. Statistical hypotheses were tested using nonparametric criteria.Results. 30 days after the 20-minute OCCA, only 5.3% of CA4 neurons were irreversibly destroyed and the total numerical density of DG granular cells remained at the control level. Hypertrophy and increased complexity of the spatial organization of astrocyte processes were observed 6 hours and 1 day after OCCA and persisted for 30 days. Astrogliosis was accompanied by an increased relative area of GFAP-positive material and fractal dimension and reduced lacunarity of the astrocyte network. The latter was especially evident in 1, 14 and 30 days after the OCCA.Conclusion. After the 20-minute OCCA, the density of GFAP-positive material increased, the fibroarchitecture reorganized and gained more complexity due to the branching of astrocyte processes. At the same time, the total numerical density of neurons changed only slightly. All this indicated the probable role of astrocytes in post-ischemic activation of natural neuroprotection mechanisms.

Publisher

FSBI SRIGR RAMS

Subject

Critical Care and Intensive Care Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3