Telomerase Transduced Osteoarthritis Fibroblast-Like Synoviocytes Display a Distinct Gene Expression Profile

Author:

SUN YUBO,MAUERHAN DAVID R.,FIRESTEIN GARY S.,LOEFFLER BRYAN J.,HANLEY EDWARD N.,GRUBER HELEN E.

Abstract

Objective.To examine the differential gene expression in telomerase transduced osteoarthritis fibroblast-like synoviocytes (hTERT-OA 13A FLS) and telomerase transduced rheumatoid arthritis FLS (hTERT-RA 516 FLS) and test the hypothesis that longterm culture of hTERT-OA 13A FLS display a disease-specific gene expression profile.Methods.Gene expression in passage 8 hTERT-OA 13A FLS and passage 8 hTERT-RA 516 FLS were compared using microarray assays. Differential expression of selected genes was further examined by reverse transcription-polymerase chain reaction (RT-PCR). After continuous expansion in culture for an additional 4 months, gene expression in the longterm cultures of hTERT-OA 13A FLS and hTERT-RA 516 FLS was again examined with microarray and real-time RT-PCR.Results.hTERT-OA 13A FLS displayed a distinct gene expression profile. While hTERT-RA 516 FLS expressedADAMTS1, ADAMTS3, ADAMTS5, and several carboxypeptidases, hTERT-OA 13A FLS expressed matrix metalloproteinase (MMP)1, MMP3, and several cathepsins at higher levels. Numerous genes classified in the immune response, lipid transport/catabolism, and phosphate transport biological processes were also expressed at higher levels in hTERT-OA 13A FLS. In contrast, numerous genes classified in the positive regulation of cell proliferation, anti-apoptosis, and angiogenesis biological processes were expressed at higher levels in hTERT-RA 516 FLS. Further, of the recently proposed 21 candidate synovial biomarkers of OA, 12 (57%) were detected in our study.Conclusion.The findings indicate that OA FLS may not be a passive bystander in OA and that telomerase transduced OA FLS offer an alternative tool for the study of synovial disease markers and for the identification of new therapeutic targets for OA therapy.

Publisher

The Journal of Rheumatology

Subject

Immunology,Immunology and Allergy,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3