Abstract
Rheumatoid arthritis (RA) is prevalent in many Indigenous North American First Nations (FN) and tends to be seropositive, familial, and disabling, as well as associated with highly unfavorable outcomes such as early mortality. The risk of developing RA is based on a perfect storm of gene-environment interactions underpinning this risk. The gene-environment interactions include a high frequency of shared epitope encoding HLA alleles, particularlyHLA-DRB1*1402, in the background population, and prevalent predisposing environmental factors such as smoking and periodontal disease. Together, these provide a compelling rationale for an RA prevention agenda in FN communities. Our research team has worked in partnership with several FN communities to prospectively follow the first-degree relatives of FN patients with RA, with the aim of better understanding the preclinical stages of RA in this population. We have focused on specific features of the anticitrullinated protein antibodies (ACPA) and other proteomic biomarkers as predictors of future development of RA. These studies have now led us to consider interventions having a favorable risk-benefit ratio if applied at a stage prior to a hypothetical “point of no return,” when the autoimmunity potentially becomes irreversible. Based on a supportive mouse model and available human studies of curcumin, omega-3, and vitamin D supplements, we are undertaking studies where we screen communities using dried blood spot technology adapted for the detection of ACPA, and then enrolling ACPA-positive individuals in studies that use a combination of these supplements. These studies are guided by shared decision-making principles.
Publisher
The Journal of Rheumatology