Influence of Janus Kinase Inhibition on Interleukin 6-mediated Induction of Acute-phase Serum Amyloid A in Rheumatoid Synovium

Author:

MIGITA KIYOSHI,KOGA TOMOHIRO,KOMORI ATSUMASA,TORIGOSHI TAKAFUMI,MAEDA YUMI,IZUMI YASUMORI,SATO JUNJI,JIUCHI YUKA,MIYASHITA TAIICHIRO,YAMASAKI SATOSHI,KAWAKAMI ATSUSHI,NAKAMURA MINORU,MOTOKAWA SATORU,ISHIBASHI HIROMI

Abstract

Objective.Inhibition of intracellular signal transduction is considered to be a therapeutic target for chronic inflammation. The new Janus kinase (JAK)3 inhibitor CP690,550 has shown efficacy in the treatment of rheumatoid arthritis (RA). We investigated the influence of JAK/STAT inhibition using CP690,550 on the induction of acute-phase serum amyloid A (SAA), which is triggered by interleukin 6 (IL-6) stimulation in rheumatoid fibroblast-like synoviocytes (RA-FLS).Methods.IL-6-stimulated gene expression of the acute-phase serum amyloid A genes (A-SAA; encoded by SAA1+SAA2) and SAA4 was analyzed by reverse transcriptase-polymerase chain reaction. The intracellular signaling pathway mediating the effects of CP690,550 on IL-6-stimulated JAK/STAT activation was assessed by measuring the phosphorylation levels using Western blots.Results.IL-6 trans-signaling induced A-SAA messenger RNA (mRNA) expression in RA-FLS. By contrast IL-6 stimulation did not affect SAA4 mRNA expression, which is expressed constitutively in RA-FLS. IL-6 stimulation elicited rapid phosphorylation of JAK2 and STAT3, which was blunted by CP690,550. CP690,550 abrogated IL-6-mediated A-SAA mRNA expression in RA-FLS. Similarly, CP690,550 inhibited IL-6-mediated A-SAA mRNA expression in human hepatocytes.Conclusion.Our data indicated that CP690,550 blocked IL-6-induced JAK2/STAT3 activation, as well as the induction of A-SAA. Inhibition of IL-6-mediated proinflammatory signaling pathways by CP690,550 may represent a new antiinflammatory therapeutic strategy for RA and AA amyloidosis.

Publisher

The Journal of Rheumatology

Subject

Immunology,Immunology and Allergy,Rheumatology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3