Whole Exome Sequencing in Early-onset Systemic Lupus Erythematosus

Author:

Batu Ezgi Deniz,Koşukcu Can,Taşkıran Ekim,Sahin Sezgin,Akman Sema,Sözeri Betül,Ünsal Erbil,Bilginer Yelda,Kasapcopur Ozgur,Alikaşifoğlu Mehmet,Ozen Seza

Abstract

Objective.Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder. Early-onset, familial, and/or syndromic SLE may reveal monogenic pathologies. The aim of this study was to examine genetic associations in patients with early-onset or familial SLE.Methods.We enrolled 7 SLE cases (from different families) with disease onset ≤ 5 years of age and family history consistent with an autosomal recessive inheritance. Whole exome sequencing (WES) was performed in 6 index cases. Suspected variants were confirmed by Sanger sequencing. We did not perform WES in 1 patient who had features similar to the first 3 cases; only the exons of C1QA, C1QB, and C1QC were screened with Sanger sequencing.Results.We demonstrated 2 novel and 3 previously reported variants in genes associated with SLE: a homozygous non-sense alteration (c.622C>T/p.Gln208Ter) in C1QA in 2 patients; homozygous non-sense alteration (c.79C>T/p.Gln27Ter) in C1QC in 1 (novel variant); homozygous missense alteration (c.100G>A/p.Gly34Arg) in C1QC in 1; homozygous missense alteration (c.1945G>C/p.Ala649Pro) in C1S in 1 (novel variant); and homozygous frameshift alteration (c.289_290delAC/p.Thr97Ilefs*2) in DNASE1L3 in 1 patient. Further, in 1 patient, we determined a strong candidate variant in HDAC7 (histone decetylase 7).Conclusion.Five patients had homozygous alterations in genes coding early complement proteins. This may lead to decreased clearance of apoptotic bodies. One patient had DNASE1L3 variant, which functions in the clearance of self-antigens. In 1 patient, we determined a novel gene that may be important in SLE pathogenesis. We suggest that monogenic causes/associations should be sought in early-onset and/or familial SLE.

Publisher

The Journal of Rheumatology

Subject

Immunology,Immunology and Allergy,Rheumatology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3