Arsenic Trioxide Induces Apoptosis of Fibroblast-like Synoviocytes and Represents Antiarthritis Effect in Experimental Model of Rheumatoid Arthritis

Author:

MEI YIFANG,ZHENG YINING,WANG HUI,GAO JUAN,LIU DIANXIN,ZHAO YANPING,ZHANG ZHIYI

Abstract

Objective.Recent studies have demonstrated that rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) proliferate as fiercely as tumor cells. Induction of apoptosis in RA FLS therefore provides a new approach for the inhibition of joint destruction. Arsenic trioxide (As2O3) was reported to be an effective apoptosis inducer in a variety of cell types. We investigated the possible effect of As2O3on apoptosis induction of RA FLS and the mechanisms involved in this process.Methods.Apoptosis was determined by flow cytometric analysis, terminal deoxynucleotide transferase-mediated dUTP nick end-labeling, and transmission electron microscopy. The activity and messenger RNA (mRNA) expression of nuclear factor-κB (NF-κB) was then detected by ELISA and real-time polymerase chain reaction, respectively. Activities of caspase-3 and caspase-8 were evaluated using luminogenic substrates. The effect of As2O3on the morphology of rats with collagen-induced arthritis was evaluated under a light microscope after H&E staining.Results.As2O3significantly enhanced the apoptosis of RA FLS. It suppressed the DNA-binding activity and mRNA expression level of NF-κB, probably by inhibiting tumor necrosis factor-α-induced activation of NF-κB. As2O3treatment significantly increased the activity of both caspase-3 and caspase-8. Morphological analysis revealed histological recovery in the synovial membrane. Synovial hyperplasia and inflammation in the joints were effectively inhibited.Conclusion.As2O3represents an apoptotic effect on RA FLS through NF-κB signaling pathway, and this process is mediated by the activation of caspase cascade. Treatment with As2O3significantly improved the pathologic changes of collagen-induced arthritis and may have potential for treatment of RA.

Publisher

The Journal of Rheumatology

Subject

Immunology,Immunology and Allergy,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3