Aberrant Chondrocyte Hypertrophy and Activation of ß-Catenin Signaling Precede Joint Ankylosis in ank/ank Mice

Author:

LAS HERAS FACUNDO,PRITZKER KENNETH P.H.,SO ANTHONY,TSUI HING WO,CHIU BASIL,INMAN ROBERT D.,TSUI FLORENCE W.L.

Abstract

Objective.We assessed the role of Ank in the maintenance of postnatal articular cartilage using the ank/ank mouse (mice homozygous for progressive ankylosis).Methods.We analyzed ank/ank mice and wild-type littermates (8, 12, and 18 weeks old). Sections from decalcified, paraffin-embedded joints were stained with hematoxylin and eosin. Articular chondrocyte size and cartilage thickness were determined using morphometric methods. Immuno-histochemical staining was performed with anticollagen X, antitissue nonspecific alkaline phosphatase (TNAP), and anti-ß-catenin antibodies on fixed joint sections. Axin2 expression in paw joint lysates in wild-type versus ank/ank mice were compared using Western blot analysis.Results.In all age groups of normal mice studied, calcified cartilage (CC) chondrocyte areas were significantly larger than those of uncalcified cartilage (UC) chondrocytes. However, similar chondrocyte areas (UC vs CC) were found in 12-week and 18-week-old ank/ank mice, indicating that hypertrophic chondrocytes were present in the UC of these mutant mice. The ank/ank mice showed an increase in CC thickness. The ank/ank UC hypertrophic chondrocytes showed diffuse immuno-reactivity for collagen X and TNAP. Increased ß-catenin activation was demonstrated by nuclear localization of ß-catenin staining in ank/ank chondrocytes. Axin2 expression from paw lysates was downregulated in ank/ank mice.Conclusion.We identified a previously unrecognized phenotype in the articular cartilage of ank/ank mice: collagen X-positive hypertrophic chondrocytes in the UC. It is possible that consequent to downregulation of axin2 expression, ß-catenin signaling was activated, leading to accelerated chondrocyte maturation and eventual ankylosis in ank/ank joints. Our studies shed new light on the contribution of a key signaling pathway in this model of joint ankylosis.

Publisher

The Journal of Rheumatology

Subject

Immunology,Immunology and Allergy,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3