The Endothelial-mesenchymal Transition in Systemic Sclerosis Is Induced by Endothelin-1 and Transforming Growth Factor-β and May Be Blocked by Macitentan, a Dual Endothelin-1 Receptor Antagonist

Author:

Cipriani Paola,Di Benedetto Paola,Ruscitti Piero,Capece Daria,Zazzeroni Francesca,Liakouli Vasiliki,Pantano Ilenia,Berardicurti Onorina,Carubbi Francesco,Pecetti Gianluca,Turricchia Stefano,Alesse Edoardo,Iglarz Marc,Giacomelli Roberto

Abstract

Objective.High endothelin-1 (ET-1) and transforming growth factor-β (TGF-β) levels may induce in healthy endothelial cells (EC) an endothelial-to-mesenchymal transition (EndMT). The same cytokines are associated with fibrosis development in systemic sclerosis (SSc). Although EndMT has not been definitively shown in SSc, this process, potentially induced by a stimulatory loop involving these 2 cytokines, overexpressed in this disease might contribute to fibroblast accumulation in affected tissues. Macitentan (MAC), an ET-1 receptor antagonist interfering with this loop, might prevent EndMT and fibroblast accumulation.Methods.EC, isolated from healthy controls (HC) and patients with SSc, were treated with ET-1 and TGF-β and successively analyzed for gene and protein expressions of endothelial and mesenchymal markers, and for Sma- and Mad-related (SMAD) phosphorylation. Further, in the supernatants, we evaluated ET-1 and TGF-β production by ELISA assay. In each assay we evaluated the ability of MAC to inhibit both the TGF-β and ET-1 effects.Results.We showed that both TGF-β and ET-1 treatments induced an activation of the EndMT process in SSc-EC as reported in HC cells. The ELISA assays showed a mutual TGF-β and ET-1 induction in both SSc-EC and HC-EC. A statistically significant increase of SMAD phosphorylation after treatment was observed in SSc-EC. In each assay, MAC inhibited both TGF-β and ET-1 effects.Conclusion.Our work is the first demonstration in literature that SSc-EC, under the synergistic effect of TGF-β and ET-1, may transdifferentiate toward myofibroblasts, thus contributing to fibroblast accumulation. MAC, interfering with this process in vitro, may offer a new potential therapeutic strategy against fibrosis.

Publisher

The Journal of Rheumatology

Subject

Immunology,Immunology and Allergy,Rheumatology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3