Remission in Early Rheumatoid Arthritis: Predicting Treatment Response

Author:

MA MARGARET H.Y.,IBRAHIM FOWZIA,WALKER DAVID,HASSELL ANDREW,CHOY ERNEST H.,KIELY PATRICK D.W.,WILLIAMS RICHARD,WALSH DAVID A.,YOUNG ADAM,SCOTT DAVID L.

Abstract

Objective.Optimizing therapeutic strategies to induce remission requires an understanding of the initial features predicting remission. Currently no suitable model exists. We aim to develop a remission score using predictors of remission in early rheumatoid arthritis (RA).Methods.We used a dataset from a UK randomized controlled trial that evaluated intensive treatment with conventional combination therapy, to develop a predictive model for 24-month remission. We studied 378 patients in the trial who received 24 months’ treatment. Our model was validated using data from a UK observational cohort (Early RA Network, ERAN). A group of 194 patients was followed for 24 months. Remission was defined as 28-joint Disease Activity Score < 2.6. Logistic regression models were used to estimate the associations between remission and potential baseline predictors.Results.Multivariate logistic regression analyses showed age, sex, and tender joint count (TJC) were independently associated with 24-month remission. The multivariate remission score developed using the trial data correctly classified 80% of patients. These findings were replicated using ERAN. The remission score has high specificity (98%) but low sensitivity (13%). Combining data from the trial and ERAN, we also developed a simplified remission score that showed that younger men with a TJC of 5 or lower were most likely to achieve 24-month remission. Remission was least likely in older women with high TJC. Rheumatoid factor, rheumatoid nodules, and radiographic damage did not predict remission.Conclusion.Remission can be predicted using a score based on age, sex, and TJC. The score is relevant in clinical trial and routine practice settings.

Publisher

The Journal of Rheumatology

Subject

Immunology,Immunology and Allergy,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3