Motor Current Signature Analysis in Predictive Maintenance

Author:

Nikolić Saša,Ćalasan Radoš

Abstract

The aim of this paper is to draw attention to the possibilities offered by spectral analysis of current and voltage in the predictive maintenance of the electric motor. Motor Circuit analysis (MCA) and Motor Current Signature analysis (MCSA) are innovative and non-invasive methods that enable diagnostics and assessment of the condition of the electric motor. The main advantage of the method is that the test is carried out during the normal motor operation, without downtime. All motor defects can be detected at the earliest stage. This enable planning the overhaul according to the condition which can make significant savings. Advanced MCSA analysers enable diagnostics of electric motors that are powered either via a soft starter, frequency inverter or directly from mains. So, it is possible in a simple and reliable way make an condition assessment of frequency inverters. In addition, it is possible to detect faults of driven machine, like misalignment, imbalance, blade faults, belts, bearings issues etc. Theoretical basis and tests that are carried out are explained in the paper.

Publisher

International Council on Large Electric Systems - Cigre, Croatian National Committee

Subject

Energy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3