Power system static and dynamic security studies for the 1st phase of Crete Island Interconnection

Author:

Kabouris J.,Karystianos M.,Nomikos B.,Tsourakis G.,Mantzaris J.,Sakellaridis N.

Abstract

The island of Crete is currently served by an autonomous electrical system being fed by oil-fired (Heavy fuel or light Diesel oil) thermal power plants and renewables (wind and PVs). The peak load and annual electric energy consumption are approximately 600 MW and 3 TWh respectively; wind and photovoltaic parks contribute approximately 20% of the electricity needs of the island. Due to the expensive fuel used, the Cretan power system has very high electric energy generation cost compared to the Greek mainland. On the other side the limited size of the system poses severe limitations to the penetration of renewable energy sources, not allowing to further exploit the high wind and solar potential of the island. According to the Ten Year Network Development Plan (TYNDP) of the Greek TSO (Independent Power Transmission Operator S.A. IPTO S.A.), the interconnection of Crete to the mainland Transmission System of Greece will be realized through two links: A 150 kV HVAC link between the Peloponnese and the Crete (Phase I) and a HVDC link connecting the metropolitan area of Athens with Crete (Phase II). The total length of submarine and underground cable of the HVAC link will be approximately 174km; it is at the limits of the AC technology and the longest and deepest worldwide at 150 kV level. A number of studies have been conducted by a joint group of IPTO and Hellenic Electricity Distribution Network Operator (HEDNO) for the design of this interconnection. This paper presents briefly the power system static and dynamic studies conducted for the design of the AC link and its operation. Firstly, the paper presents the main results of the static security study regarding the calculation of the maximum power transfer capability of the link and the selection of the reactive power compensation scheme of the cable. Results from dynamic security analysis studies are also presented. The small-signal stability analysis concludes that a new (intra-area) electromechanical oscillation is introduced to the National System after the interconnection. The damping of the electromechanical oscillations is sufficient; however the operation of power system stabilizers at power plants located both at the mainland and at Crete power system can increase significantly the damping of important oscillation modes. Finally with respect to the risk of loss of synchronism after a significant disturbance in the system of Crete, such as a three-phase fault (“transient stability”)- enough safety margin is estimated by means of Critical Clearing Time calculations.

Publisher

International Council on Large Electric Systems - Cigre, Croatian National Committee

Subject

Energy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3