Comparison of machine learning techniques for SoC and SoH evaluation from impedance data of an aged lithium ion battery

Author:

Aloisio Davide,Campobello GiuseppeORCID,Leonardi Salvatore GianlucaORCID,Sergi FrancescoORCID,Brunaccini Giovanni,Ferraro MarcoORCID,Antonucci Vincenzo,Segreto Antonino,Donato NicolaORCID

Abstract

<p class="Abstract"><span lang="EN-US">State of charge estimation and ageing evolution of lithium ion (Li-Ion) batteries are key points for their massive applications in the market. However, the battery behavior is very complex to understand because many parameters act in determining their ageing evolution. Therefore, traditional analytical models employed for this purpose are often affected by inaccuracy. In this context, machine learning techniques can provide a viable alternative to traditional models and a useful tool to characterize the batteries behavior. </span></p><p class="Abstract"><span lang="EN-US">In this work, different machine learning techniques were applied to model the impedance evolution over time of an aged cobalt based Li-Ion battery, cycled under a stationary frequency regulation profile for grid application. The different ML techniques were compared in terms of accuracy to determine the state of charge and the state of health over the battery ageing phenomena. Experimental results showed that ML based on Random Forest algorithm can be profitably used for this purpose.</span></p>

Publisher

IMEKO International Measurement Confederation

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Machine Learning Algorithm for State of Health Prediction of Lithium-Ion Batteries;2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE);2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3