Estimate the useful life for a heating, ventilation, and air conditioning system on a high-speed train using failure models

Author:

Catelani Marcantonio,Ciani Lorenzo,Guidi GiuliaORCID,Patrizi GabrieleORCID,Galar Diego

Abstract

<p class="Abstract">Heating, ventilation, and air conditioning (HVAC) is a widely used system used to guarantee an acceptable level of occupancy comfort, to maintain good indoor air quality, and to minimize system costs and energy requirements. If failure data coming from company database are not available, then a reliability prediction based on failure rate model and handbook data must be carried out. Performing a reliability prediction provides an awareness of potential equipment degradation during the equipment life cycle. Otherwise, if field data regarding the component failures are available, then classical reliability assessment techniques such as Fault Tree Analysis and Reliability Block Diagram should be carried out. Reliability prediction of mechanical components is a challenging task that must be carefully assessed during the design of a system. For these reasons, this paper deals with the reliability assessment of an HVAC using both failure rate model for mechanical components and field data. The reliability obtained using the field data is compared to the one achieved using the failure rate models in order to assess a model which includes all the mechanical parts. The study highlights how it is fundamental to analyze the reliability of complex system integrating both field data and mathematical model.</p>

Publisher

IMEKO International Measurement Confederation

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning to Learn HVAC Failures: Layering ML Experiments in the Absence of Ground Truth;Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3