A hybrid tree sensor network for Condition Monitoring system to optimize maintenance policy

Author:

Ciani Lorenzo,Bartolini Alessandro,Guidi Giulia,Patrizi GabrieleORCID

Abstract

Wind energy is the leading candidate between the renewable energy sources as alternative to burning fossil fuels. A proper and accurate condition monitoring plan is mandatory to ensure high reliability and availability required by energy production systems. This paper proposes a Wireless Mesh Network to implement a widely distributed condition monitoring system for a wind farm. Using different types of sensor, the condition monitoring system evaluates the health state of each turbine. The aim of the work is to propose an architecture able to identify possible incipient failures in the most critical turbine’s components. Using this system, it is possible to guarantee continuity of service minimizing the unplanned maintenance operation due to hidden failure.

Publisher

IMEKO International Measurement Confederation

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Instrumentation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IMS Awards: An Innovative Data-Driven Reliability Life Cycle for Complex Systems;IEEE Instrumentation & Measurement Magazine;2023-11

2. Improving Power Quality measurements using deep learning for disturbance classification;2023 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2023-05-22

3. Network Monitoring and Security Protection Design of Wind Farm Centralized Control Center;2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA);2023-02-24

4. Network Operation Status Evaluation Monitoring System Based on Machine Learning Algorithm;2022 International Conference on Knowledge Engineering and Communication Systems (ICKES);2022-12-28

5. A first proposal of a data-driven reliability life cycle for complex systems;2022 IEEE International Symposium on Systems Engineering (ISSE);2022-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3