A solar PV model parameters estimation based on an improved manta foraging algorithm with dynamic fitness distance balance

Author:

El Marghichi MouncefORCID,Dangoury Soufiane,Amlila Mohammed Amine

Abstract

Accurately simulating and operating photovoltaic (PV) modules or solar cells requires determining specific model parameters based on experimental data. Extracting these parameters is crucial for analyzing system performance under various conditions such as temperature and sunlight variations. However, modeling solar photovoltaic systems is inherently nonlinear, which calls for an efficient algorithm. In this study, we employ the MRFO-dFDB (Manta Ray Foraging Optimization with dynamic Fitness Distance Balance) algorithm, which utilizes fitness distance balance to balance the exploration and exploitation of the search area when assessing parameters in solar PV models. By applying MRFO-dFDB to extract parameters from the STP6-120/36 and Photowatt-PWP201 solar modules, we observe exceptional predictive performance for both single diode (SDM) and double diode (DDM) models. MRFO-dFDB exhibits superior performance compared to state-of-the-art methods. It achieves lower Root-Mean-Square Error (RMSE) values, specifically < 15.3 mA for the STP6-120/36 module and <2.4 mA for the Photowatt-PWP201 module. Additionally, it demonstrates lower maximum errors of 39.02 mA and 5.33 mA, as well as lower power errors of 155.42 mW and 14.122 mW, for the STP6-120/36 and Photowatt-PWP201 solar modules, respectively. Furthermore, it exhibits excellent performance with faster computation speed (< 30.1 seconds in all tests), further emphasizing its superiority.

Publisher

IMEKO International Measurement Confederation

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3