Evaluation of spatial patterns accuracy in identifying built-up areas within risk zones using deep learning, RGB aerial imagery, and multi-source GIS data

Author:

Vitale Alessandro,Salvo Carolina,Lamonaca Francesco

Abstract

In the presence of natural disasters that increasingly affect urban centers, innovative methodologies that can support all the subjects and bodies involved in the disaster management system are increasingly important. This task can be enhanced in urban settings by automatically assessing at-risk buildings through satellite and aerial imagery. However, creating and implementing models with robust generalization capabilities is crucial to achieving this goal. Based on these premises, the authors proposed a deep learning approach utilizing the U-Net model to map buildings within known landslide-prone areas. They trained and validated the U-Net model using the Dubai Satellite Imagery Dataset. The model's prediction accuracy in adapting its results to urban environments in Italy, different from those involved in the training and validation stages, was tested using natural color orthoimages and diverse geographic information system (GIS) data sources. The outcomes indicate that the model's predictions are better in contexts with denser urban fabric. The level of accuracy in dispersed urban shapes worsens as building footprints cover a small portion of the total image area. Overall, the results demonstrate that the suggested methodology can effectively identify buildings in landslide risk zones, demonstrating noteworthy adaptability, making the proposed platform a tool that can be instrumental for decision-makers and urban planners in pre-disaster and post-disaster stages.

Publisher

IMEKO International Measurement Confederation

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3