Image analysis for the sorting of brick and masonry waste using machine learning methods

Author:

Linß Elske,Walz Jurij,Könke Carsten

Abstract

This paper describes different machine learning methods for recognizing and distinguishing brick types in ma­sonry debris. Certain types of bricks, such as roof tiles, facing bricks and vertically perforated bricks can be reused and recycled in different ways if it is possible to separate them by optical sorting. The aim of the research was to test different classification methods from machine learning for this task based on high-resolution images. For this purpose, image captures of different bricks were made with an image acquisition system, the data was pre-processed, segmented, significant features selected and different AI methods were applied. A support vec­tor machine (SVM), multilayer perceptron (MLP), and k-nearest neighbor (k-NN) classifier were used to classify the images. As a result, a recognition rate of 98 % and higher was achieved for the classification into the three investigated brick classes

Publisher

IMEKO International Measurement Confederation

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated Machine Learning in Waste Classification: A Revolutionary Approach to Efficiency and Accuracy;2023 12th International Conference on Computing and Pattern Recognition;2023-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3