A lipid-hydrolysing activity involved in hexenal formation

Author:

Matsui K.1,Kurishita S.1,Hisamitsu A.1,Kajiwara T.1

Affiliation:

1. Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan

Abstract

Short-chain aldehydes such as (3Z)-hexenal and n-hexanal are formed from lipids through sequential actions of lipid-hydrolysing, lipoxygenase and fatty acid hydroperoxide lyase activities. The aldehydes are formed upon wounding of plant tissues, and are reported to have bactericidal and fungicidal activities. Furthermore, it has been reported that the aldehydes can induce expression of a subset of genes involved in disease resistance and that they are involved in a defence response against insect herbivores. Although several genes encoding lipoxygenases and the lyases have been isolated, and characterized to some extent, only little is known about the enzyme accountable for the lipid-hydrolysing step. In this study, we tried to characterize the lipid-hydrolysing activity involved in the short-chain aldehyde formation in Arabidopsis. When Arabidopsis leaves were homogenized, (3Z)-hexenal was formed rapidly within a few minutes. During this time period, the amount of α-linolenic acid and C16:3 rapidly decreased. Such a rapid increase of the aldehyde was repressed almost completely when the leaves were homogenized under a nitrogen stream, and instead free trienoic acids accumulated. A lipase inhibitor, quinacrine, successfully repressed the hydrolysis. It was revealed that trienoic acids in monogalactosyldiacylglycerol were predominantly hydrolysed during the formation of short-chain aldehydes. Collectively, it is suggested that the lipolytic enzyme involved in the short-chain aldehyde formation is a galactolipid-specific lipase.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3