Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts

Author:

CHEN Qin M.,LIU Juping1,MERRETT Jessica B.1

Affiliation:

1. Department of Pharmacology, Skaggs Pharmaceutical Sciences Building, Room 130, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721, U.S.A.

Abstract

Early-passage human diploid fibroblasts (HDFs) undergo senescence-like growth arrest in response to sublethal concentrations of H2O2 [Chen and Ames (1994) Proc. Natl. Acad. Sci. U.S.A. 95, 4130-4134]. We determine here whether H2O2 can cause apoptosis in HDFs and the molecular changes that differ between apoptosis and senescence-like growth arrest. When exponentially growing early-passage IMR-90 cells were treated for 2 h with 50-200 μM (or 0.25-1 pmol/cell) H2O2, a fraction of cells detached at 16-32 h after the treatment. The cells remaining attached were growth-arrested and developed features of senescence in 1 week. The detached cells showed caspase-3 activation and typical morphological changes associated with apoptosis. Caspase-3 activation was H2O2 dose-dependent and preceded nuclear condensation or plasma membrane leakage. Apoptotic cells were mainly distributed in the S-phase of the cell cycle, while growth-arrested cells exhibited predominantly G1- and G2/M-phase distributions. H2O2 pretreatment induced G1 arrest and prohibited induction of apoptosis by a subsequent H2O2 challenge. The p53 protein showed an average 6.1-fold elevation in apoptotic cells and a 3.5-fold elevation in growth-arrested cells. Reduction of p53 levels with human papillomavirus E6 protein prohibited the activation of caspase-3 and decreased the proportion of apoptotic cells. Growth-arrested cells had elevated p21, while p21 was absent in apoptotic cells. Bcl-2 was elevated in both growth-arrested and apoptotic cells. Finally, although the overall level of bax did not change in growth-arrested or apoptotic cells, the solubility of bax protein increased in apoptotic cells. Our data suggest that in contrast with growth-arrested cells, apoptotic cells show an S-phase cell cycle distribution, a higher degree of p53 elevation, an absence of p21 protein and increased solubility of bax protein.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3